Sparse Subspace Clustering via Diffusion Process
نویسندگان
چکیده
Subspace clustering refers to the problem of clustering high-dimensional data that lie in a union of lowdimensional subspaces. State-of-the-art subspace clustering methods are based on the idea of expressing each data point as a linear combination of other data points while regularizing the matrix of coefficients with `1, `2 or nuclear norms for a sparse solution. `1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad theoretical conditions, but the clusters may not be fully connected. `2 and nuclear norm regularization often improve connectivity, but give a subspace-preserving affinity only for independent subspaces. Mixed `1, `2 and nuclear norm regularization could offer a balance between the subspace-preserving and connectedness properties, but this comes at the cost of increased computational complexity. This paper focuses on using `1 norm and alleviating the corresponding connectivity problem by a simple yet efficient diffusion process on subspace affinity graphs. Without adding any tuning parameter , our method can achieve state-of-the-art clustering performance on Hopkins 155 and Extended Yale B data sets.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملSparse Additive Subspace Clustering
In this paper, we introduce and investigate a sparse additive model for subspace clustering problems. Our approach, named SASC (Sparse Additive Subspace Clustering), is essentially a functional extension of the Sparse Subspace Clustering (SSC) of Elhamifar & Vidal [7] to the additive nonparametric setting. To make our model computationally tractable, we express SASC in terms of a finite set of ...
متن کاملSparse Subspace Clustering via Group Sparse Coding
We propose in this paper a novel sparse subspace clustering method that regularizes sparse subspace representation by exploiting the structural sharing between tasks and data points via group sparse coding. We derive simple, provably convergent, and computationally efficient algorithms for solving the proposed group formulations. We demonstrate the advantage of the framework on three challengin...
متن کاملSubspace Clustering Reloaded: Sparse vs. Dense Representations
State-of-the-art methods for learning unions of subspaces from a collection of data leverage sparsity to form representations of each vector in the dataset with respect to the remaining vectors in the dataset. The resulting sparse representations can be used to form a subspace affinity matrix to cluster the data into their respective subspaces. While sparsity-driven methods for subspace cluster...
متن کاملA Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data
Subspace clustering groups data into several lowrank subspaces. In this paper, we propose a theoretical framework to analyze a popular optimization-based algorithm, Sparse Subspace Clustering (SSC), when the data dimension is compressed via some random projection algorithms. We show SSC provably succeeds if the random projection is a subspace embedding, which includes random Gaussian projection...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1608.01793 شماره
صفحات -
تاریخ انتشار 2016